Thermal Stress Induced Aggregation of Aquaporin 0 (AQP0) and Protection by α-Crystallin via Its Chaperone Function

نویسندگان

  • Satyanarayana Swamy-Mruthinti
  • Volety Srinivas
  • John E. Hansen
  • Ch Mohan Rao
چکیده

Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature increased from 40°C to 65°C. α-Crystallin, molecular chaperone abundantly present in the eye lens, completely prevented the AQP0 aggregation at a 1∶1 (weight/weight) ratio. Since α-crystallin consists of two gene products namely αA- and αB-crystallins, we have tested the recombinant proteins on their ability to prevent thermal-stress induced AQP0 aggregation. In contrast to the general observation made with other target proteins, αA-crystallin exhibited better chaperone-like activity towards AQP0 compared to αB-crystallin. Neither post-translational modifications (glycation) nor C-terminus truncation of AQP0 have any appreciable effect on its thermal aggregation properties. α-Crystallin offers similar protection against thermal aggregation as in the case of the unmodified AQP0, suggesting that αcrystallin may bind to either intracellular loops or other residues of AQP0 that become exposed during thermal stress. Far-UV circular dichroism studies indicated a loss of αhelical structures when AQP0 was subjected to temperatures above 45°C, and the presence of α-crystallin stabilized these secondary structures. We report here, for the first time, that α-crystallin protects AQP0 from thermal aggregation. Since stress-induced structural perturbations of AQP0 may affect the integrity of the lens, presence of the molecular chaperone, α-crystallin (particularly αA-crystallin) in close proximity to the lens membrane is physiologically relevant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Amyloid Protection in the Eye Lens: Retention of α-Crystallin Molecular Chaperone Activity after Modification into Amyloid Fibrils

Amyloid fibril formation occurs from a wide range of peptides and proteins and is typically associated with a loss of protein function and/or a gain of toxic function, as the native structure of the protein undergoes major alteration to form a cross β-sheet array. It is now well recognised that some amyloid fibrils have a biological function, which has led to increased interest in the potential...

متن کامل

The small heat-shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin.

Stress conditions can destabilize proteins, promoting them to unfold and adopt intermediately folded states. Partially folded protein intermediates are unstable and prone to aggregation down off-folding pathways leading to the formation of either amorphous or amyloid fibril aggregates. The sHsp (small heat-shock protein) αB-crystallin acts as a molecular chaperone to prevent both amorphous and ...

متن کامل

Carnosine inhibits modifications and decreased molecular chaperone activity of lens alpha-crystallin induced by ribose and fructose 6-phosphate.

PURPOSE Alpha-crystallin, a major structural protein in the lens, prevents heat- and oxidative stress-induced aggregation of proteins and inactivation of enzymes by acting as a molecular chaperone. Modification of alpha-crystallin by some posttranslational modifications results in conformational changes and decreases in chaperone activity, which may contribute to cataractogenesis in vivo. Carno...

متن کامل

Modulation of α-crystallin chaperone activity in diabetic rat lens by curcumin

α-Crystallin, a small heat shock protein (sHSP), constitutes the major portion of eye lens cytoplasm and its concentration in the lens can reach up to 50% of the total protein. Like other sHSP, α-crystallin displays chaperone-like activity in suppressing the aggregation of various proteins and in preventing inactivation of enzymes due to heat and other stress conditions [1-6]. Hence, in additio...

متن کامل

Molecular Mechanism of the Chaperone Function of Mini-α-Crystallin, a 19-Residue Peptide of Human α-Crystallin

α-Crystallin is the archetypical chaperone of the small heat-shock protein family, all members of which contain the so-called "α-crystallin domain" (ACD). This domain and the N- and C-terminal extensions are considered the main functional units in its chaperone function. Previous studies have shown that a 19-residue fragment of the ACD of human αA-crystallin called mini-αA-crystallin (MAC) show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013